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We give a sharp criterion for the convergence of a Lagrangian cardinal spline
series for the integer grid in terms of a "radius of convergence."

Let Sm = S m(E) denote the linear space of all functions s E: e'" 1 (!:;) for
which all restrictions

slli- l.j1 = qj' j E:

are polynomial functions of degree m. at best.
In what follows

m = 2r + 1 E:

IS odd. Like Micchelli [3. 41, Schoenberg [7, 81 and others, we call the
elements of S'" cardinal spline functions of degree m. It is well known that
the interpolation problem

Sm -3 s : s(j) = Yj for j E: (1 )

has a (unique) solution, if the "sequence" 1.vi fjE;' Yj E: for j E: is not
growing too fast in absolute value as j tends to ±oo. Micchelli and
Schoenberg use power growth conditions, and Greville et al. [1 I and
Schempp 161 deal also with exponentially growing splines, however. based
on a B-spline representation.

We are going to derive a precise order condition, which means that we
shall calculate a radius of convergence as is usual in the theory of power
series.

In [51 we gave an explicit representation for the Lagrangians, defined by

li(k) = (jjk
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for j. k E
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by the aid of the Euler~Frobenius polynomials

Hm(t, z) = (I - Z)III' I (I + z(?Ii:!z))1II (I/( 1- z)).

The work was based essentially on ideas of Meinardus and Merz 121.
Because of l/x) = 10 (.,< - j), we could restrict ourselves on the description of
10 , and because of 10 (--x ) = lo(x) it suffices to represent the restrictions

By 15, formula (13)1 we have (withj- instead ofj)

q/I) = (I ~ 1)111 h l . i '\' GA(t) ZA I

A I

for j E with

where

Zl < .,. < zr < -I < zr' 1< .. , < z,r, I = 0

are the zeros of Hm(O, z).
Note that

(2 )

(3 )

for °< t < L k = 1.. .. , r. (4)

is valid.

We try to obtain a solution of the problem (I) in the form

s(x)= '\' Yill,<) (5 )

for x E:: The series shall be called "convergent" if both partial sums

o
\' and

+ 'f

\'

i I

converge by their own.
To begin with, let x E (0, !). Then we have

li(X) = lo(x - j) = loU - x) = q)! - x)

ll'<) = lo(x + ijl) = qlil i I(X)

for jE

for - jE 1'11'
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Hence we have to investigate the convergence of
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By the use of (2) we obtain

~:f

\' v
- .1
i 1

iq/X)+ \' Yjq}l-x).
i·1

(6)

t
\"1 1 _ , m ~_ JI-jqi(X)-Jo(l-x)
i~ 1

\' Ylj \' ak(x)z;<
ilk I

+ +3

\' Yiqi(l-x)=YI Xm - ~ Yi ~ ak(l-x)zk
j
.

i ..Iii k 1

The series converge if and only if

+
\' YI jZr

j
\' ak(x)(Zr/ZkY

ilk 1

or

converge, respectively. Now we consider the power series

(7)

tx

\'" .A .(X) Zi
""",-fl--J) ~

i I

where. by (4) and definition,

i I

r

o<ar(t) <Ai(t):= \' akU)(zr/zj ~ \' ak(t) ~ A
k 1 k 1

is valid for some constant A E IP and for 0 < t < 1.
Because of

lim sup VII Y1- jl Ai(x) = lim sup~·.
i. + .I~+ x

lim sup ~I yil A}l - x) = lim sup 1G].
I ~ +:1.. .1---+ I rr
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their radii of convergence are R f and 1/R ,where

R := lim sup .1';1,
i· J

R, := l/lim sup
l •..../

\'. ,

respectively. Therefore the series of (7) converge if

respectively, and they diverge if

z, I! :> R I

or

or z, II> R .

respectively. Hence it is convenient to introduce

R := min~R , . R Ii

to be the "radius of convergencc" of the "sequencc" j .1',

THEOREM. Let R denote the radius (!/ cOlll'ergence of the sequence
j Yj . The series

converges for x E by its own. Incase of x E , it converges if R :> I Z, I ,

and diverges if R < Iz, II. If R :> Iz, II holds, the series and their formal
derivatives

!f

SIAl(X) = \. Y;li kl (.'(), k = 0, L.. .. m 1. (8 )

are uniformly convergent on any compact set in II , and s is a solution of the
interpolation problem

(Sm:3 s: s(k) =.l'kfor k E ).

Proof For x = k E thc series converges obviously and its value is h'
The statements on the convergence or divergence are proved already if
o< x < I. For k ~ I < x < k, k E , they can be proved by shifting x and j.
This does not affect the radius of convergence. Now lct R:> z, I I. If
0< x < I, the series of (7) are dominated by the convergent series

\' 1)'1 ;1 z, IIA
; I
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\' l.vi! Z r 1IA.
i 1
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respectively. Hence the series of s(x) converges uniformly on 10. 11. By
similar arguments, where ak(x) and ak( 1 ..~.. x) are replaced by the
corresponding derivative. we obtain the result that all the formal d(:rivatives
of s(x) up to the order m - 1 converge uniformly on 10. II. For every other
interval of the form Ik - L k I. k E . we obtain the same result by shifting
methods. Hence all the series of (8) converge uniformly on every compact
set in . From this it follows that s E S",. and this finishes the proof.

Remarks. The essential condition of the Theorem can also be read like

lim sup vt\'!1 < IZr .
! --> ! J

(9)

lim sup
i---> f

hence it states for the Yrs a growth not exceeding that of I Z r iii for.i --->± CfJ.

which is exponential. Note again that zrl> 1.
Next let us introduce the (formal) Laurent~series

Its upper and lower radii of convergence are R. and R . respectively.
Because of z; I =zr+I' compare 15. formulas (6). (7)1. e.g.. we can also read
the condition (9) like

R < IZr!' ( 10)

For the uniqueness of interpolating spline functions with exponential
growth compare Greville et al. Ill.
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